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Stereoselective Synthesis of Conjugated all-Trans-Tetraenes. Application to the Synthesis
of B-Parinaric Acid Methyl Ester.
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Abstract: in this paper is reported the stereoselective synthesis of all-trans-tetraenes by reductive
elimination of 1,8-dibenzoate-2,4,6-trienes with sodium amalgam. The method was applied to the

syntheses of 4E, 6E, 8E, 10E-heptatetracne and B—parinaric acid methyl ester.
© 1997 Elsevier Science Ltd.

Conjugated polyolefinic fragments are found in a wide variety of interesting and important organic
compounds, including natural products such as : the polyene macrolides'?, carotenoids!®, leukotrienes .
We recently reportedz‘3 that all-trans trienes can be prepared stereoselectively and in high yield by

Na(Hg) or low valent titanium reductive elimination of 1,6-dibenzoate-2,4 -dienes which are readily made by
acetylene addition to aldehydes, followed by diyne reduction with Zn/Cu (Scheme 1).
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We published also the total syntheses of several natural products containing a trienic moiety made by this
reductive elimination : 6(E)-5(S)-12(R) and 5(S)-12(R) leukotriene B44 , cis and trans galbanolenes, navenone
B and lignarenone B°.

We now report an efficient synthesis of all-trans tetraenes 1 based on the reductive elimination of 1,8-

dibenzoate-2,4,6-trienes 2 obtained from the diol-diynes 3 which are obtained by a Chodkiewicz reaction’
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between the bromo-propargylic alcohol 4 and the diacetylenic alcohol § as shown on the retrosynthetic scheme
(Scheme 2).
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This methodology was first applied to the synthesis of (4E,6E,8E,10E) heptatetracne, 11. The
preparation of 1-bromo-3-hydroxyoctyne 7 started from commercially available hexanal (scheme 3) which was
condensed with trimethylsilyl lithioacetylene to give the propargylic alcohol 6 in 87% yield. Bromoacetylene7
was then obtained from 6 in Isobe conditions® (NBS,AgNOs in acetone, 78% yield). Chadkiewicz reaction’ of
the bromide 7 and the diyne 8 (prepared from lithiated diacetylene and butyraldehyde in 88% yield) gave the
triynic diol 9 in 84% yield. The triple bonds of 9 were reduced with the activated Zn-Cu couple in MeOH/H;go9

and the diol converted to the trienic dibenzoate 10. An overall yield of 73% was obtained for these two steps.
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Reaction of 10 with sodium amalgam in methanol at -20°C gave the all E tetracne 11 in 83% yield with
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more than 95% isomeric purity after column chromatography. We did not detected in the "H NMR spectra of
the crude elimination product the characteristic signals of Z double bonds.’

This method was also applied to the synthesis of the methyl ester of B-parinaric acid® 12, methyl
(9E,11E,13E,15E)-octadeca-9,11,13,15 tetranoate , an interesting fluorescent probe for biological menbrane
microstructure’ containing a tetraene unit. The (9Z,11E,13E,15Z) stereoisomer, called o-parinaric acid, was
first isolated from the kemels of Parinarum Laurinum'?. Tt can be converted into the all-trans B parinaric acid
by treatment with iodine or using UV irradiation'?. Only three reports have described the synthesis of B-

16 put in two of them **'® the 'H NMR data showed vinylic protons at 6.5ppm which do not

9,18

parinaric acid
correspond to an all trans structure.

The propargylic bromide 14 was obtained from 1,9-nonanediol via monoprotection with TBDMSCI,
Swem oxidation to the aldehyde 13 , condensation with lithio trimethylsilyl-acetylene and bromination with
NBS and AgNO; (Scheme 4). Chodkiewicz condensation’ of 14 with the diynediol 15 (prepared in 74% yield
from lithio acetylene and propanal) gave the triynediol 16 in 78% yield. Reduction with Zn/Cu gave the

trienicdiol (75%yield), which was then dibenzoylated to 17 under standard conditions.
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Deprotection of the primary alcohol (82% yield), oxidation with pyridinium dichromate in DMF (89% vyield)

and esterification with trimethylsilyl diazomethane'” afforded the methylester 18 in quantitative yield.

Reaction of 18 with 6% Na(Hg) in THF/MeOH (3/1) gave the B-parinaric methylester 12 in 81% yield

(rap: 58-59°C, lit.'® 58.5). The 500Mhz 'H NMR shows the characteristic symmetrical signal of all-trans

double bonds® and IR data are identical with those found in literature*°.

In conclusion these results provide an easy and stercoselective route to all-trans fonctionalized

tetraenes. It is important to notice that for the first time the reductive elimination was carried out on a molecule

containing a carboxylic ester.
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